$\qquad$

## CS 383

Exam 1
October 6, 2017

There are 6 numbered questions. The 6 parts of Question 1 are worth 4 points each. Questions 2 through 6 are worth 15 points each. You get one point for free.

1. Which languages are regular? You don't need to prove your answers. Write an " $R$ " in the blank next to the description of each language you think is regular. Write " N " for any language you think is not regular. In each case the alphabet is $\Sigma=\{0,1\}$
a. __R__Strings that end in exactly 10 1's. So 0101111111111 is in this language but 0111111111111 is not.
b. __R__Strings with any number of 0's followed by an even number of 1's.
c. __R__Strings where the digits sum to a number divisible by 5 .
d. __N_Strings where there are at least as many 0's as 1's.
e. _ R__0* $\mathcal{L}$ (that is the concatenation of two languages), where $\mathcal{L}=\left\{0^{n} \mid n\right.$ is prime $\} 0^{*} \mathcal{L}=\left\{0^{n} \mid n>1\right\}$
f. __R__Strings of length 1000 that have a prime number of 1's. This is a finite language.
2. Here is an $\varepsilon$-NFA, with start state $A$.
a) Convert this NFA to a DFA
b) Describe in English the strings it accepts.


Answer:


This accepts all strings ending in 0.
3. Suppose we know that for some language $\mathcal{L}$ we know that the language $00 \mathcal{L}=\{00 \alpha \mid \alpha \in \mathcal{L}\}$ is regular. Must $\mathcal{L}$ be regular? Either give an example where $\mathcal{L}$ is not regular and $00 \mathcal{L}$ is regular, or else show that $\mathcal{L}$ must be regular if $00 \mathcal{L}$ is.

The language $\mathcal{L}$ must be regular. Suppose $P=(\Sigma, Q, \delta, s, F)$ is a DFA accepting $00 \mathcal{L}$. Let $q=\delta(s, 0)$ and let $q 1=\delta(q, 0)$. State $q 1$ is where you get to in $P$ on input 00 . Let $P^{\prime}=(\Sigma, Q, \delta, q 1, F) . P^{\prime}$ is the same as $P$ only with start state $q 1$. Now suppose string $\alpha$ is in $\mathcal{L}$. Then $00 \alpha$ is in 00L and takes $P$ from state $s$ to $q$ to $q 1$ and then eventually to a final state. So $\alpha$ takes $P^{\prime}$ from $q 1$ to a final state, and $P^{\prime}$ accepts $\alpha$. Similarly, if $\alpha$ takes $P^{\prime}$ from $q 1$ to a final state then $00 \alpha$ takes $P$ from $s$ to a final state, so $00 \alpha$ is in $00 \mathcal{L}$ and $\alpha$ must be in $\mathcal{L}$. Altogether, the DFA P' accepts $\alpha$ if and only if $\alpha$ is in $\mathcal{L}$, so $\mathcal{L}$ is regular.
4. Consider the following DFA. We had an algorithm for converting a DFA to a regular expression. This involved making a table of regular expressions $r_{i j}^{k}$.


Here is the first column of a table of the $r_{i j}^{k}$ expressions; find the 4 entries of the second column.

|  | $\mathrm{k}=0$ | $\mathrm{k}=1$ |
| :---: | :---: | :---: |
| $r_{11}^{k}$ | $\varepsilon+1$ | $1^{*}$ |
| $r_{12}^{k}$ | 0 | $0+(\varepsilon+1) 1^{*} 0=1^{*} 0$ |
| $r_{21}^{k}$ | 1 | $1+11^{*}(\varepsilon+1)=1^{+}$ |
| $r_{22}^{k}$ | $\varepsilon+0$ | $\varepsilon+0+11^{*} 0=\varepsilon+1^{*} 0$ |

$$
r_{i j}^{1}=r_{i j}^{0}+r_{i 1}^{0}\left(r_{11}^{0}\right)^{*} r_{1 j}^{0}
$$

5. Use the pumping lemma to show carefully that the language $\left\{0^{m} 1^{n} 0^{n} \mid m>=2, n>=0\right\}$ is not regular.

Suppose this language is regular. Let $p$ be its pumping constant. Let $w=0^{2} 1^{p} 0^{p}$. This is a string longer than $p$, so it should be pumpable. Suppose $w=x y z$ is any decomposition of $w$ with
$|x y|<=p$ and $y$ nonempty. If $y$ contains any $0 s$ then $x y y^{0} z$ has fewer than 2 leading $0 s$ and so is not in the language. If $y$ contains any $1 s$ then $x^{2} z$ has more $1 s$ than trailing $0 s$ and so is not in the language. This means there is no pumpable decomposition of $\mathbf{w}$, and the language can't be regular.
6. Give a grammar for the language $\left\{0^{n} 1^{m} \mid n>m>0\right\}$

I think of this language as $0^{+}\left\{0^{m} 1^{m} \mid m>0\right\}$. Here is a grammar for that way of thinking of it:

```
S => AB
A => OA | 0 (A generates 0+)
B => 0B1 | 01 ( }\textrm{B}\mathrm{ generates {0m1m}|m>0}
```

